Atomic Decomposition of EEG for Mapping Cortical Activation
نویسندگان
چکیده
To improve the measurement and differentiation of normal and abnormal brain function we are developing new methods to decompose multichannel (electroencephalogram) EEG into elemental components or “atoms.” We estimate EEG atoms using multiway analysis, specifically parallel factor analysis or PARAFAC for modeling. Activation sequences of EEG atoms can identify functional brain networks dynamically, with much finer time resolution than fMRI. For example, EEG atoms activate in specific combinations during the sequential operations of brain networks, such as Default Mode, Somatomotor, Dorsal Attention and others. Guided by the score values of the identified atoms we inferred the volumetric brain sources of the selected networks using the sLORETA pseudoinverse algorithm. To confirm network identities, we compared 2-D and 3-D functional network maps derived from EEG atoms to known functional neuroanatomy of the networks. We find that multichannel EEGs in most individuals can be accounted for by a set of five to six standard atoms, which parallel classical EEG bands, and have unique power spectra, scalp and cortical topographies. We discuss how we may use the activation sequences of these atoms to describe the dynamic interplay of functional brain networks.
منابع مشابه
Cortical Activity During Postural Recovery in Response to Predictable and Unpredictable Perturbations in Healthy Young and Older Adults: A Quantitative EEG Assessment
Introduction: To investigate the effects of predictable and unpredictable external perturbations on cortical activity in healthy young and older adults. Methods: Twenty healthy older and 19 healthy young adults were exposed to predictable and unpredictable external perturbations, and their cortical activity upon postural recovery was measured using a 32-channel quantitative encephalography. Th...
متن کاملEstimation of Velocity Fields and Propagation on Non-Euclidian Domains: Application to the Exploration of Cortical Spatiotemporal Dynamics
Better understanding of the interrelationship between the brain’s structural architecture and functional processing is one of the leading questions in today’s integrative neuroscience. Non-invasive imaging techniques have revealed as major contributing tools to this endeavor, which obviously requires the cooperation of space and time-resolved experimental evidences. Electromagnetic brain mappin...
متن کاملMapping single-trial EEG records on the cortical surface through a spatiotemporal modality.
Event-related potentials (ERPs) induced by visual perception and cognitive tasks have been extensively studied in neuropsychological experiments. ERP activities time-locked to stimulus presentation and task performance are often observed separately at individual scalp channels based on averaged time series across epochs and experimental subjects. An analysis using averaged EEG dynamics could di...
متن کاملبررسی سینتیک تخریب حرارتی آمونیوم پر کلرات- گلیسیدیل آزید پلیمر (AP-GAP) در حضور نانوکاتالیزگر Graphene@Fe3O4
In this study, the effect of Fe3O4-coated graphene as a nanocatalyst on the degradation kinetics of Ammonium Perchlorate and Glysydyl Azide Polymer (AP/GAP) composite propellants is investigated in order to modify and improve the burning rate of propellants. The SEM-EDX and EDX-Mapping surface analysis methods were used for structural and morphological study of the propellant containing nanoca...
متن کاملOn an atomic decomposition in Banach spaces
An atomic decomposition is considered in Banach space. A method for constructing an atomic decomposition of Banach space, starting with atomic decomposition of subspaces is presented. Some relations between them are established. The proposed method is used in the study of the frame properties of systems of eigenfunctions and associated functions of discontinuous differential operators.
متن کامل